Abstract
This study sought to further understand how environmental conditions influence the outcomes of early developmental insults. It compared changes in monoamine levels in frontal cortex, nucleus accumbens and striatum of male and female Long-Evans rat offspring subjected to maternal Pb exposure (0, 50 or 150 ppm in drinking water from 2 months pre-breeding until pup weaning)+/−prenatal (PS) (restraint on GD16-17) or PS + offspring stress (OS; three variable stress challenges to young adults) determined at 2 months of age and at 6 months of age in littermates subsequently exposed either to experimental manipulations (EM: daily handling and performance on an operant fixed interval (FI) schedule of food reward), or to no experience (NEM; time alone). Time alone (NEM conditions), even in normal (control) animals, modified the trajectory of neurochemical changes between 2 and 6 months across brain regions and monoamines. EM significantly modified the NEM trajectories, and except NE and striatal DA, which increased, blunted the changes in monoamine levels that occurred over time alone. Pb+/−stress modified the trajectory of monoamine changes in both EM and NEM conditions, but these predominated under NEM conditions. Stress-associated modifications, occurring mainly with NEM OS groups, were fully reversed by EM procedures, while reversals of Pb+/−stress-associated modifications occurred primarily in nucleus accumbens, a region critical to mediation of FI response rates. These results extend the known environmental conditions that modify developmental Pb+/−stress insults, which is critical to ultimately understanding whether early insults lead to adaptive or maladaptive behavior and to devising behavioral therapeutic strategies. That time alone and a set of EM conditions typically used as outcome measures in intervention studies can themselves invoke neurochemical changes, moreover, has significant implications for experimental design of such studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.