Abstract

Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas carnivore communities were affected by forbs of small stature, grasses and legumes. Contrasting patterns in the abundance of dominant species imply different levels of resource specialization for dominant herbivores (narrow food spectrum) and carnivores (broad food spectrum). That in turn could heavily affect ecosystem functions mediated by herbivorous and carnivorous arthropods, such as herbivory or biological pest control.

Highlights

  • Current and future biodiversity loss strongly affects the functioning of ecosystems [1]

  • The linear models revealed a positive effect of plant species richness (PSR) on herbivore abundance, and species richness and a negative effect on the relative abundance of dominant species

  • Effects of PSR on herbivore abundance were driven by changes in plant biomass, which increased with increasing PSR

Read more

Summary

Introduction

Current and future biodiversity loss strongly affects the functioning of ecosystems [1]. In the 1990s, e.g. Siemann et al [2] reported an increase in herbivore, predator and parasite richness but not abundance, with increasing plant species richness From their results, they concluded that plant species richness might not be the most important predictor for arthropod species richness and that interactions between trophic groups may maintain and promote overall diversity. Koricheva et al [4] presented contrasting responses of different arthropod orders and trophic levels to changes in plant species richness and plant community composition. For some orders, they found a positive response to increasing plant species richness while others showed negative or no response. The inconsistency in the observed patterns point out the need for studies replicating and extending previous results to derive general conclusions about the relationship between plant and arthropod diversity at different trophic levels

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call