Abstract

The cylindrical wall boundary layer of a closed cylinder split in two halves at the equator is studied experimentally. When these two parts rotate in exact corotation the internal flow is essentially in solid-body rotation at the angular velocity of both halves. When a slight difference between the rotation frequencies is established a secondary flow is created due to the differential rotation between both sides and restricted to the boundary layer. This behavior of the boundary layer is compared with theoretical and numerical results finding the "sandwich" structure of a Stewartson boundary layer. Time-dependent waves are observed near the cylindrical wall. Their behavior for different values of the control parameters are presented. Finally, a global recirculation mode is also found due to a symmetry-breaking induced between sides that appears because of a slight misalignment of the experimental setup, whose characteristics are compatible with the behavior of a precessing cylinder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.