Abstract

The double-differential cross sections for (n, px), (n, dx), (n, tx), (n, 3Hex) and (n, αx) reactions in carbon have been measured at 96 MeV incident neutron energy. The various charged particles (inclusive spectra) were identified using ΔE–E techniques. From the experimental data, energy- and angle-differential as well as production cross sections were determined, and subsequently the partial and total kerma coefficients. The deduced partial and total kerma coefficients were compared to previous experimental results and theoretical calculations. The findings indicate that the deduced kerma coefficients for the hydrogen isotopes are in good agreement with those deduced from a previous measurement, and that the kerma coefficient values, in particular of the hydrogen isotopes, are systematically higher than values obtained from recent model calculations, which consequently resulted in a total kerma coefficient which is up to 30% higher than predicted by the calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.