Abstract

Experimental analysis was conducted to investigate the turbulent heat transfer behaviors within a tubular heat exchanger, incorporating a novel baffle plate design. The new design includes a perforated circular baffle plate with a rectangular flow deflector that can be adjusted to different inclination angles. The baffle plate is strategically positioned at the entrance of the heat exchanger, resulting in a swirling flow downstream. To assess the impact of the baffle plate design, three baffle plates were placed longitudinally along the flow, with varying pitch ratios (l/D). The effects of pitch ratio (ranging from 0.6 to 1.2), deflector inclination angle (ranging between 30⁰ to 50⁰), and Reynolds numbers (ranging between 16000 to 29000) were examined. The outcomes highlighted the substantial impact of pitch ratio and inclination angle on the thermal enhancement factor. In particular, compared to single segmental baffle plates working under similar operating conditions. The result indicates that an inclination angle of 30° and a pitch ratio of 1 exhibited an average 41.49% augmentation in thermal-fluidic performance compared with an exchanger with a segmental baffle plate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.