Abstract

ABSTRACTThis research work draws an insight into the experimental investigations on a series hydraulic/electric synergy system—a green transportation system. An experimental test rig of the system with all necessary sensors and instrumentation has been developed to study the energy saving through hydraulic regenerative braking. The effect of various system parameters, such as braking time, maximum accumulator pressure, pre-charge pressure of hydro-pneumatic accumulator, volumetric displacement of the hydraulic master pump, and hydraulic regeneration pump on the quantum of regeneration energy, was analyzed. In addition, an AMESim model of the real-time experimental test rig has been developed and validated with experimental results. A set of five different experimental designs (parameter variations) of the system is defined with the available standard component sizes. The best design is selected of the available experimental designs based on the maximum hydraulic regeneration energy and regeneration efficiency. It was observed that the selected design has an energy efficiency of 13.3% and a regeneration efficiency of 43.8%. An accumulator-centric control strategy for energy management is developed and implemented on the experimental test rig configured with the selected design. The effectiveness of the control strategy is tested through experiments and simulation on the developed test rig.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.