Abstract

The nucleate pool boiling heat transfer over micro-finned cylindrical surfaces has application in the heat exchangers used in thermal power plants and chemical industries. The estimation of boiling heat transfer coefficient is an important parameter in the design of two-phase heat exchangers using micro-finned cylindrical surfaces. In the present work, related experimental investigations on four micro-finned cylindrical surfaces with different surface geometry using refrigerant R-141b at atmospheric pressure are conducted to determine the boiling heat transfer coefficient over micro-finned cylindrical surfaces. A correlation is developed by dimensional analysis wherein the effects of geometrical parameters, operating pressure and thermo-physical properties of fluids are taken into consideration and dimensional analysis conducted using Buckingham π-theorem. The correlation developed utilizes experimental data obtained over the present study as well as from previous studies by various researchers including experimental data for water over different micro-finned cylindrical surfaces at 1 bar by Mehta and Kandlikar, experimental data for R123 at 0.97 bar by Saidi et al. and experimental data for R134a over micro-finned cylindrical surface at 6.1 bar, 8.1 bar, 10.1 bar and 12.2 bar by Rocha et al. The heat flux ranging from 5 to 1100 kW/m2 are considered for the analysis. The data points have been compared with the proposed correlation and the absolute average deviation of the whole data set was obtained as 13.43% with root mean square deviation of 0.0273. All the predicted values were within ±15% of the experimental values of the boiling heat transfer coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.