Abstract

The cross flow from channel to channel through gas diffusion layer (GDL) under the land could play an important role for water removal in proton exchange membrane (PEM) fuel cells. In this study, characteristics of liquid water removal from GDL have been investigated experimentally, through measuring unsteady pressure drop in a cell which has the GDL initially wet with liquid water. The thickness of GDL is carefully controlled by inserting various thicknesses of metal shims between the plates. It has been found that severe compression of GDL could result in excessive pressure drop from channel inlet to channel outlet. Removing liquid water from GDL by cross flow is difficult for GDL with high compression levels and for low inlet air flow rates. However, effective water removal can still be achieved at high compression levels of GDL if the inlet air flow rate is high. Based on different compressed GDL thicknesses, different GDL porosities and permeabilities were calculated and their effects on the characteristics of liquid water removal from GDL were evaluated. Visualization of liquid water transport has been conducted by using transparent flow channel, and liquid water removal from GDL under the land was observed for all the tested inlet air flow rates, which confirms that cross flow is practically effective to remove the liquid water accumulated in GDL under the land area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.