Abstract

Experimental investigations are reported for pulsating Taylor bubble (PTB) flow through a 2.12 mm horizontal circular minichannel. Air and water are used as working fluids. A T-junction is used to generate Taylor bubble flow in a minichannel. The superficial gas velocity (U SG ) is kept as 0.0472 m/s. The superficial liquid velocity (U SL ) is kept as 0.0472 and 0.0708 m/s. The pulsating liquid flow is generated by developing a pulse generator circuit. The investigations are carried out for various pulsating flow frequencies of 0 Hz (continuous flow), 0.1, 0.25, 0.5, 1 and 2 Hz, which correspond to Womersley number (W o ) 0, 0.84, 1.39, 1.88, 2.65 and 3.75, respectively. Heat transfer enhancement is found to be negligible (less than 1%) for pulsating laminar liquid flow through the minichannel. On the contrary, heat transfer is observed to decrease by 35% for PTB flow compared with continuous Taylor bubble (CTB) flow for imposed frequency of pulsation up to 1 Hz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call