Abstract

Conventional refrigeration system poses a major threat to the environment due to emission of harmful gases (CFC, HCFC). Hence, there is a need for an alternative. Thermoacoustic refrigeration, an alternative to conventional refrigeration, offers a wide scope for further research. It functions by passing high intensity sound waves through a porous stack or regenerator placed inside a resonator tube. Due to the pressure pulsations and the oscillatory motion of the gas, a temperature gradient is created on either side of the stack. Heat exchangers utilize this cooling. This paper deals with the fabrication of the model of the system and analyzes the performance in terms of temperature difference, by varying the stack material, its position inside the resonator, type of input wave and the frequency of the wave. Optimization by design of experiments is also done. A maximum temperature difference of 5.42 oC was obtained at the best combination of its parameters. Results obtained from the experiment are in agreement with the results obtained from Taguchi analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call