Abstract
Engine noise and vibrations are influenced by engine’s combustion characteristics in addition to contributions from moving components. Combustion characteristics in-turn depend on various parameters such as fuel type, engine load, engine speed, spark timing etc. Low-carbon intensity fuels such as methanol have emerged as an attractive alternative to gasoline because of potential of their production from renewable resources and their higher octane rating. This experimental study was carried out in a single cylinder gasoline direct injection (GDI) research engine to investigate engine’s noise, and vibration characteristics and correlate them with the combustion characteristics of the engine. In this study, 10% (v/v) and 20% (v/v) methanol was blended with gasoline (M10 and M20), and these test fuels were evaluated at varying engine loads and speeds vis-à-vis baseline gasoline (G100). It was found that methanol-gasoline blends evaluated in this study generated relatively higher in-cylinder pressure, higher HRR, higher rate of pressure rise (RoPR) and cumulative heat release (CHR) compared to G100, which influenced engine's noise and vibration characteristics significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.