Abstract
The nano surface roughness of metallic materials is important in engineering and medical fields for specific applications. Magneto rheological abrasive flow finishing (MRAFF) process was performed on nickel-free austenitic stainless workpieces in order to obtain surface roughness at the nano level and also to forecast the performance of the MRAFF process in terms of responses such as surface roughness (SR) and material removal rate (MRR). These two responses are affected by process factors such as hydraulic pressure, current to the electromagnet, and the number of cycles performed during the machining process. The design of experiments (DOE) was used to determine the contributions of process parameters to output responses. The techniques of grey relational analysis (GRA) and principal component analysis (PCA) were used in these experimental investigations to discover the process factors that minimise the final Ra and maximise MRR. Through the DOE, a minimum SR of 63.24 nm and a maximum MRR of 2.34 mg/sec were obtained on the samples for the combination of 30 bar pressure, 6 A current, and 300 number of cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.