Abstract

AbstractExperimental investigations on full-scale Timber Concrete Composite (TCC) floor systems with various composite connectors are presented in this paper. The stiffness, strength, and failure modes of were evaluated. The 9.2 m long and 2.4 m wide TCC floor segments were comprised of 245 mm thick, 7-ply Cross-laminated Timber (CLT) panels with 150 mm concrete topping connected with three types of shear connectors: (i) self-tapping screws, (ii) steel kerf plates, and (iii) glued-in Holz-Beton-Verbund (HBV) plates. Six TCC floor segments were tested to failure under symmetric four-point bending and three TCC floor segments were tested under torsional bending by applying eccentric loading near the edge. The floor deformations at nine locations and connector slips at CLT-concrete interfaces at eight locations along the length of the floor were measured. The full-scale tests showed that the steel kerf plates—for the selected connector configurations- exhibited the highest capacity and stiffness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call