Abstract

Even though there have been several studies conducted by the industry on the use of different inlet devices for gas-liquid separation there have been limited laboratory and field evaluations on the use of external piping configurations as flow conditioning devices upstream of a separator inlet. The results of a systematic study of droplet deposition and coalescence in curved pipe and pipe fittings are reported in this paper. A facility has been designed consisting of two main test sections: a fixed horizontal straight pipe section and an interchangeable 180° return pipe section (or curved pipe section) of the same length. Both inlet and outlet to the 180° return are horizontal, but the plane of the 180° return pipe section can pivot about the axis of the inlet horizontal pipe to an angle as much as 10° downwards allowing downward flow in the return section. Various pipe fittings of different radius of curvature can be installed for comparison in the 180° return. Fittings evaluated in this study included: 180° pipe bend, 2 standard radius elbows (with radius of curvature of 1.5D), 2 long radius elbows (with radius of curvature of 6D), 2 target tee bend, and 2 cushion tee bend. Experiments have been carried out using water and air and varying gas velocities and liquid loadings. In order to compare the performance of geometries, Droplet Deposition Fractions (DDF) were measured in the horizontal straight pipe section and in the 180° return pipe section as a measure of coalescence efficiency. The results demonstrate that higher DDF occurs for curved fittings as compared to the straight pipe section. Two standard (short) radius elbows bend have approximately 10% DDF higher, whereas two long radius elbows along with 180° pipe bend perform better (by 15–20% DDF) than straight pipe. Additionally, no significant differences between DDF’s in three different inclination angles of a curved pipe were observed. It was found that the cushion tees and target tees can coalesce droplets at lower gas velocities but break up droplets at higher gas velocities. It can be concluded that 180° pipe bend or two 6D long radii elbows can serve as a droplet coalescer, a pair of cushion tees or target tee can also work as coalescer at low kinetic energy but as atomizers at high kinetic energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.