Abstract

Results are given of experimental investigations of an oscillating heat pipe (OHP) made in the form of a closed-loop coil of a copper capillary tube with an inside diameter of 2 mm, 4.5 m long, and filled with water in an amount of 50% of internal volume. The starting characteristics of OHP are studied in the range of heat loads from 30 to 100 W under conditions of cooling by way of natural and forced air convection. The pattern of temperature pulsations in the zones of heating, heat transport, and cooling is investigated. It is found that temperature pulsations exhibit a chaotic pattern. In cooling of an OHP by way of natural convection, the increase in heat load is accompanied by an increase in the maximal temperature of the heating zone with a simultaneous decrease in the nonuniformity of the temperature field. When an OHP is cooled by way of forced convection, a decrease in the maximal temperature of the heating zone is observed; however, this is accompanied by an increase in the amplitude of temperature pulsations and in the nonuniformity of the temperature field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.