Abstract

AbstractAntler is an extraordinary bone tissue that displays significant overall toughness when compared to other bone materials. The origin of this toughness is due to the complex interaction between the nanoscale constituents as well as structural hierarchy in the antler material. Of particular interest is the mechanical performance of the interface between the collagen fibrils and considerably smaller volume of non-collagenous protein (NCP) between these fibrils. This paper directly examines the mechanical properties of isolated volumes of antler using combined in situ atomic force microscopy (AFM)-scanning electron microscopy (SEM) experiments. The antler material at the nanoscale is approximated to a fiber reinforced composite, with composite theory used to evaluate the interfacial shear stresses generated between the individual collagen fibrils and NCP during mechanical loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call