Abstract

ABSTRACTThe importance of magnetic abrasive powder (MAP) in finishing the surface of work materials as a flexible cutting tool in the presence of a magnetic field during the ultrasonic assisted magnetic abrasive finishing (UAMAF) process is quite evident. A sufficiently intense magnetic field provides the desired magnetic force to the iron particles. This holds nonmagnetic abrasive particles firmly and thus makes flexible chains. However, at higher rotational speeds of the magnet due to the requirement of high centripetal force, the chains start flying away from the finishing zone. In the present work, to overcome this deficiency, bonded MAPs were developed using the sintering technique. The effect of various process parameters on the magnetic property (magnetization) of sintered MAPs was investigated. Design of experiments (DoE) was planned as per the L8 orthogonal array of the Taguchi method, and magnetizations along with M-H curves for all eight different MAPs were measured. Subsequently, analysis of experimental data was carried out using various techniques to optimize the process parameters. It was observed that sintering temperature affects magnetization the most. Scanned microscopy (SEM) and X-ray diffraction (XRD) analysis were also carried out to investigate bonding strength in sintered MAP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.