Abstract

A new non-traditional finishing process known as abrasive flow machining (AFM) is used to deburr, radius, polish and remove recast layer of components in a wide range of applications. The process is relatively new, although around 2000 machines are in use worldwide. Material is removed from the workpiece by flowing a semisolid visco-elastic/visco-plastic abrasive-laden medium across the surface to be finished. Areas inaccessible to traditional methods, and complex passages, can be finished to high quality by this process. The process embraces a wide range of feasible applications including aerospace, dies and moulds, automotive parts, medical components, etc. In the present work, the effects of different process parameters, such as number of cycles, concentration of abrasive, abrasive mesh size and media flow speed, on material removal and surface finish are studied. The dominant process parameter found is concentration of abrasive, followed by abrasive mesh size, number of cycles, and media flow speed. Experiments are performed with brass and aluminum as work materials. Experimental and theoretical results are compared. The machined surface texture is studied using scanning electron microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call