Abstract

Selective laser sintering (SLS) is a powder-based rapid prototyping process in which parts are built by sintering of selected areas of layers of powder using laser. Nowadays, SLS is emerging as a rapid manufacturing technique, which produces functional parts in small batches, particularly in aerospace application and rapid tooling. Therefore, SLS prototypes should have sufficient strength to satisfy functional requirements. Apart from the energy density which is the combination of laser power, beam speed and hatch spacing, various other parameters like refresh rate, layer thickness and hatch pattern influence part strength. In the present work, relationship between strength and the various process parameters namely layer thickness, refresh rate, part bed temperature and hatch pattern have been investigated. Experiments are conducted based on Taguchi method using L16 modified orthogonal array. Tensile specimens of polyamide (PA2200) material as per the standard ‘ASTM D638’ are fabricated on SLS machine with constant energy density and tested on a universal testing machine for tensile strength. Optimum strength conditions are obtained by maximising signal to noise (S/N) ratio and analysis of variance (ANOVA) is used to understand the significance of process variables affecting part strength. A regression model to predict part strength has been developed. Confirmation test conducted subsequently has revealed that the results are within the confidence interval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call