Abstract

Shape memory alloys (SMA) hold a very promising place in the field of manufacturing, especially in biomedical and aerospace applications. Owing to the unique and favorable properties such as pseudo elasticity, shape memory effect and Superelasticity, Nitinol is the most popular amongst other SMAs. However, a major challenge lies in the final surface features of the machined component. In the current study, Nitinol rods were machined using the wire electrical discharge machining (WEDM) process and subsequently, the surfaces were investigated using the Field emission scanning electron miscroscope (FESEM) technique for the features. In addition to this, Singular Generative Adversarial Network (SinGAN) and DenseNet deep learning models were prepared and applied for the prediction of surface morphology and its correlation with the process parameters. It was concluded from the study that the DenseNet model was highly effective in predicting the surface images with 100% average accuracy both with training and testing whereas the least average accuracy of 99.13% and 98.98% with training and testing respectively are observed with the MNB model. Thus, the proposed methodology can prove to be highly beneficial for prediction, specifically for manufacturing applications where the data is limited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.