Abstract

Closed-system pyrolysis experiments were conducted on a coal sample with a maturity of 0.57%Ro using gold tubes pressured to 10MPa, 25MPa, 50MPa, 75MPa and 100MPa to investigate the influence of increasing pressure on gas generation. The variation of gaseous components generated by coal, the H/C atomic ratio and the vitrinite reflectance of pyrolysis residues with pressure and temperature indicate that pressure does not linearly impact gas generation from coal. Pressure has no effect on primary gas generation, but it does affect secondary gas generation. Retardation of secondary generation is highest at 50MPa. Our investigations reveal that previously published and partly opposing results about the effect of pressure on hydrocarbon generation can be mainly explained by the difference in the pressure range under which those experiments were conducted. Our experimental results demonstrate that hydrocarbon generation is generally least retarded at pressures exceeding 75MPa. Nevertheless, hydrocarbon generation in natural systems usually occurs at pressures of 10–60MPa (1–6km burial depth) and might therefore be secondarily controlled by pressure retardation effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.