Abstract

Experimental investigation is conducted to examine the characteristics of forced convective heat transfer from electronic components, subjected to a confined impinging circular jet of Air and CO2. Parameters such as Heat transfer coefficient, Jet velocities, Nozzle-to-chip spacing (aspect ratio) (H/d) have been studied. Nozzle diameter ranged from 2mm to 8mm. Local heat flux measurements are made with different diameters of jet in the range of Reynolds numbers from 5,000 to 44,000 for CO2 and 2,500 to 23,000 for air. H/d is varied from 3 to 45 for both air and CO2. Variations both in the local heat transfer coefficient and Nusselt number are determined as function of Re. Variations of average Nusselt number and local heat flux with time are obtained in a wide range of Re and H/d ratios. The results of the investigation are presented in graphical form and a comparative study of Air and CO2 as coolant is made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.