Abstract

Four tool path strategies such as equal-interval tool paths, parallel tool paths, parallel–tangency tool paths, and freeform tool paths are proposed in computer numerical control milling of a complex freeform surface. The objective is to understand how 3D tool paths influence their machining efficiency, surface quality, and form accuracy. In this study, their scallop heights were less than or equal to 15 μm. First, their scallop heights distributions and 3D tool path distances were theoretically analyzed; then, four tool path strategies were investigated with reference to machining efficiency, surface texture height, surface roughness, and form errors. It is shown that scallop heights distribution can be used to display the surface texture state and predict tool path distance. Experimental results indicate that the surface texture height, the surface roughness, and the form errors were nearly identical on the machined flat location and surface for various tool path strategies, whereas their surface quality and form accuracy are easily destroyed on the abrupt ones except for the parallel tool paths. Although the freeform tool paths produce the shortest tool path distance through 3-axes driving mode, the parallel tool paths offer the best surface quality and form accuracy through 2-axes driving mode. This is because the 3-axes driving and its vector changes on abrupt location easily lead to large machine vibration and movement errors. It is confirmed that the parallel tool path strategy with 2-axes driving mode can improve the surface quality and form accuracy in actual milling of a complex freeform surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.