Abstract

Ti6242S and Ti-555, as two typical titanium alloys, are often used to manufacture high-temperature aeroengine parts and landing gear components, respectively. They have different chemical composition and microstructure, which make them have different mechanical properties, and also affect their machinability. In this paper, face milling experiments were carried out to evaluate the wear performance by using CVD-Ti(C, N) + Al2O3 + TiN, PVD-(Ti, Al)N + TiN coated and uncoated tools. The results show that Ti-555 has the worse machinability than that of Ti6242S. When milling Ti6242S, all tools suffered adhesive wear and diffusion wear; the wear of Ti(C, N) + Al2O3 + TiN coated tool was more serious than that of other tools due to the blunt cutting edge; (Ti, Al)N + TiN coated tool suffered micro chipping and coating peeling with the minimal wear loss. When milling Ti-555, uncoated tool suffered serious chipping, abrasive wear and adhesive wear; Ti(C, N) + Al2O3 + TiN coated tool suffered serious chipping and coating peeling with short tool life; (Ti, Al)N + TiN coated tool suffered coating peeling, adhesive wear and diffusion wear. Overall, (Ti, Al)N + TiN coated tools have the longest tool life and are preferred for face milling of Ti6242S and Ti-555 titanium alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call