Abstract

The thermal conductivity and dynamic viscosity of three different combinations of metal oxide composite nanolubricant had been investigated at different nanoparticle volume concentrations (0.02 to 0.1%) and different temperatures (303–353 K). The prepared Al2O3SiO2, Al2O3TiO2 and TiO2SiO2 composite metal oxide nanoparticle was dispersed in Polyalkylene Glycol (PAG 46) lubricant by espousing the two-step preparation method. The thermal and viscosity experiment was performed using KD2 Pro Thermal Properties Analyzer and LVDV-III Rheometer, respectively. All the considered metal oxide composite nanolubricants were witnessed to behave as Newtonian fluids. A maximum viscosity enhancement of 20.50% recorded for Al2O3TiO2/PAG nanolubricant with 0.1% nanoparticle volume concentration and at the temperature of 303 K. Whereas, the highest thermal conductivity improvement recorded for Al2O3SiO2/PAG nanolubricant with 2.41% improvement at 0.1% nanoparticle concentration and temperature of 303 K. A new regression model to estimate the dynamic viscosity and thermal conductivity of metal oxide composite nanolubricants were proposed based on the finding obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.