Abstract

The manifold microchannel (MMC) with pin-fins is fabricated and its thermal-hydraulic performance is experimentally investigated. The MMC with pin-fins is an embedded cooling device made of a manifold wafer and a microchannel wafer, anodically bonded to form a total thickness of 1 mm. A microchannel wafer has the etched micro pin-fins with a porosity of 0.75, fin diameter of ▪, and fin height of ▪. For comparison, MMC with plate-fins is also fabricated, in which the plate-fins have the same porosity, fin thickness, and fin height as the pin-fins. Experiments are performed using single-phase deionized water as the working fluid with flow rates ranging from 50 to 300 ml/min, corresponding to pumping powers ranging from 0.28 to 33 mW, which enables the dissipation of an effective heat flux up to 1.2 kW/cm2. The experimental results demonstrate that employing pin-fins improves the thermal-hydraulic performance of the MMC heat sinks compared to using the plate-fins: an average 40% reduction in the effective thermal resistance (the total thermal resistance subtracting the conduction resistance) at a fixed pumping power condition. This is attributed to the fact that the MMC with pin-fins exhibits 20% higher heat transfer coefficient and 40% greater effective heat transfer area, even with 25% lower pressure drop on average compared to the MMC with plate-fins. At the highest tested flow rate of 300 ml/min, the MMC with pin-fins successfully dissipates the heat flux of about 1.2 kW/cm2 without phase-change heat transfer while maintaining the heater temperature below ▪. This is achieved with only 7 mW of pumping power, corresponding to the COP of 41,300 – a 5.3-fold increase in the COP compared to the MMC with plate-fins under the identical heater temperature and the flow rate conditions. Therefore, this study suggests that the MMC with pin-fins is an energy-efficient cooling device for the thermal management of ultra-high heat flux electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call