Abstract

Experimental investigations are performed in order to determine the thermal conductivity of NiFe2O4 nanoparticles dispersed in deionized water. The magnetic nanoparticles are synthesized using a microemulsion method. The X-ray diffraction (XRD), transmission electronic microscopy (TEM), and vibration sample magnetometer (VSM) are used to characterize the structure, the size and the magnetic properties of the nanoparticles. The VSM results disclose that the NiFe2O4 nanoparticles are ferromagnetic at room temperature. Experimental measurements on thermal conductivity of the prepared nanofluids are conducted at different volume concentrations between 0% and 2% and in the temperature range of 25–55°C. The experimental results show that the thermal conductivity of nanofluids increase with an increase in volume concentration and temperature. The Maximum enhancement in thermal conductivity of nanofluids is 17.2% at 2% volume concentration and in temperature of 55°C. Finally, the experimental results of thermal conductivity are fitted with a new correlation to predict the thermal conductivity of nanofluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.