Abstract

In the present study, titanium (IV) oxide (TiO2) nanoparticles were dispersed in n-octadecane to fabricate phase change material (PCM) with enhanced properties and behavior. Thermal conductivity (TC) and viscosity of n-octadecane/TiO2 dispersions were experimentally investigated using transient plane source (TPS) technique and rotating coaxial cylindrical viscometer, respectively. The results showed that the TC of n-octadecane/TiO2 dispersion depends on temperature and nanoparticle loading. A non-monotonic behavior of TC enhancement in both solid and liquid phases was observed. In solid phase, the maximum TC enhancement occurred at 3wt.% of nanoparticles. When the nanoparticle mass fraction was over 4% in liquid phase, the TC started to decrease. The rheological behavior of the n-octadecane/TiO2 samples indicated that dispersions with low nanoparticle mass fractions demonstrate Newtonian behavior, and for higher mass factions the shear-thinning behavior was observed. Shear stress vs. shear rate curves showed that the liquid phase of PCM behaves like a Bingham plastic fluid for mass fraction greater than 1%. As expected, the effective viscosity could be influenced by temperature. At the shear rate of 48.92s−1 for 3wt.% nanoparticles, the effective viscosity decreased by 26.8% while temperature increased from 35°C to 55°C. For the investigated n-octadecane/TiO2 dispersions, new thermophysical correlations are proposed for predicting TC and rheological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.