Abstract

Energy storage is considered a crucial unit in utilizing renewable energy sources, and compressed air energy storage (CAES) provides a cost-effective solution. It offers the benefits of zero pollution, a long lifespan, low maintenance costs, and minimal environmental impact. In order to increase the possibilities of compressed air energy storage for vehicle power, the performance of the expander needs to be studied. First, a CAES unit test bench is established. Then, the volumetric flow rate, rotational speed, torque, and output power are examined. Additionally, the isentropic exhaust temperature, pressure, and gas consumption rate of the scroll expander are analyzed. Finally, analyzing the economic feasibility of the CAES unit entails running the unit under varied driving conditions. Results reveal that the pressure of the input expander is high, which will lead to greater torque, greater peak power, and a greater temperature drop, but the gas in the air tank will also run out quickly. The peak power of the scroll expander does not occur at the maximum volume flow rate, rotation speed, and torque. The basic investment of the CAES unit mainly depends on the peak output power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call