Abstract
An experimental study on the practical performance of organic Rankine cycle (ORC) system using zeotropic mixture is performed by using a small scale ORC power generation experimental setup. R601a/R600a is selected as the working fluid. The effects of mixture composition, heat source temperature, and working fluid flow rate on the performance of ORC system are investigated. The experimental results indicate that the net power output first increases and then decreases as the R600a concentration increases. The optimal mixture composition with the maximum net power output is 0.6/0.4 (mass fraction) at the heat source temperature of 115°C. The net power output of R601a/R600a (0.6/0.4) is higher than that of R601a by 25%, indicating that the performance of ORC system can be clearly improved by using the zeotropic mixture. For a fixed working fluid flow rate, both net power output and thermal efficiency first decrease slowly and then drop sharply with the decrease of the heat source temperature. The appropriate superheat degree of R601a/R600a is in the range of 15 to 20°C when the heat source temperature has a small variation. In addition, the optimal working fluid volume flow rates yielding the maximum net power output are obtained for different compositions of R601a/R600a. The experimental results in the study can be of great significance for the design and operation of ORC power system using zeotropic mixture. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.