Abstract

The performance of solar cooling absorption system needs further research, due to its poor coefficient of performance (COP). Therefore, this study investigated the performance of a 23 kW solar powered single-effect lithium bromide–water (LiBr–H2O) absorption cooling system. Furthermore, the space heating mode was also investigated and the improvement methods were analyzed and discussed. The cooling system was driven by a parabolic trough collector of 56 m2 aperture area and used for cooling a 102 m2 meeting room. Research results revealed that the chiller's maximum instantaneous refrigeration coefficient (chiller efficiency) could be up to 0.6. Most of the time, in sunny and clear sky days the daily solar heat fraction ranged from 0.33 to 0.41 and the collectors field efficiency ranged from 0.35 to 0.45. At the same time, chiller efficiency was varied from 0.25 to 0.7 and the daily cooling COP was varied from 0.11 to 0.27, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.