Abstract

In order to improve the cracking performance in the negative moment region of composite continuous girder bridges with corrugated webs, engineered cementitious composite (ECC) is used instead of conventional normal concrete (NC). Web and concrete types are used as the main research parameters in experiments. The test results indicate that steel-ECC specimens have a higher flexural load capacity and stiffness than steel-NC specimens. The cracks of steel-ECC specimens are characterised by small width and dense distribution. Nonlinear finite element models are established and verified by experimental results. The simulated load–displacement curves are similar to the experimental ones, and the models have a high degree of accuracy. The ECC slab strength, thickness and width are used as parameters for the investigation to analyse the effect of the ECC slab on the flexural bearing capacity of composite girders. Compared with the results of calculations according to the code, the bearing capacity obtained from the parametric analysis is higher. It suggests that the contribution of the ECC slab needs to be considered when calculating the bearing capacity of the steel-ECC composite girder with corrugated webs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.