Abstract

To investigate the damage mechanisms in granite’s physical and mechanical properties after high-temperature water quenching, this study employed MTS815.04 for uniaxial compression tests on thermally treated specimens, with concurrent acoustic emission monitoring, and utilized nanoindentation for micromechanical analysis. The results show that with increasing temperature, granite's peak strength and elastic modulus decrease, with a sharp decline after 400–500 °C, corresponding to a significant increase in the internal damage, which can be detected by acoustic emission monitoring. Below 500 °C, macroscopic mechanical degradation is due to mineral thermophysical property differences, while above 500 °C, microcrack development is the main deterioration factor. The failure mode shifts from tensile to tensile-shear complex to shear failure, with transition points at 400 °C and 800 °C. The results of this study are of certain reference value for improving the efficiency of extracting thermal energy from dry-hot rocks and providing security guidance for the tunnel restoration process following fire damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.