Abstract

The influence of the thickness of the boundary layer developing over the surface of an axisymmetric bluff body upon its base pressure and near-wake flow is analyzed experimentally. The model, whose diameter-to-length ratio is d/l = 0.175, has a forebody with an elliptical contour and a sharp-edged flat base; it is supported above a plate by means of a faired strut. The pressure distributions over the body lateral and base surfaces were obtained using numerous pressure taps, while the boundary layer profiles and the wake velocity field were measured through hot-wire anemometry. The tests were carried out at \(Re = u_\infty l/\nu = 5.5\times10^{5}\), at which the boundary layer over the lateral surface of the body becomes turbulent before reaching the base contour. Strips of emery cloth were wrapped in various positions around the body circumference in order to modify the thickness and the characteristics of the boundary layer. The results show that increasing the boundary layer thickness causes a decrease in the base suctions and a corresponding increase in the length of the mean recirculation region present behind the body. In the spectra of the velocity fluctuations measured within and aside the wake, a dominating peak becomes evident in the region downstream of the final part of the recirculation region. The relevant non-dimensional frequency decreases with increasing boundary layer thickness; however, a Strouhal number based on the wake width and the velocity defect at a suitable reference cross section downstream of the recirculation region is found to remain almost constant for the different cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call