Abstract
The exceptional properties of methanol, such as its high octane number and latent heat of evaporation, make it an advantageous fuel for efficient utilization in dual-fuel combustion techniques. The aim of this study is to investigate the effect of direct methanol injection timing on the combustion, performance and emission characteristics of a dual-fuel spark ignition engine at different injection pressures. We conducted four different direct injection pressure tests ranging from 360° ahead to 30° CA ahead at 30° CA intervals. The experimental results indicate that regardless of the injection pressure, altering the methanol injection timing from −360° to −30° CA ATDC leads to distinct combustion behavior and changes in the combustion phase. Initially, as the injection timing is delayed, the combustion process accelerates, which is followed by a slower combustion phase. Additionally, the combustion phase itself experiences a delay and then advances. Regarding performance characteristics, both the brake thermal efficiency (BTE) and exhaust gas temperature (EGT) exhibit a consistent pattern of first increasing and then decreasing as the injection timing is delayed. This suggests that there is an optimal injection timing window that can enhance both the engine’s efficiency and its ability to manage exhaust temperature. In terms of emissions, there are different trends in this process due to the different conditions under which the individual emissions are produced, with CO and HC showing a decreasing and then increasing trend, and NOx showing the opposite trend. In conclusion, regardless of the injection pressure employed, adopting a thoughtful and well-designed injection strategy can significantly improve the combustion performance and emission characteristics of the engine. The findings of this study shed light on the potential of methanol dual-fuel combustion and provide valuable insights for optimizing engine operation in terms of efficiency and emissions control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.