Abstract
The advent of newer technology increases the electrical and electronic devices into the market in a rapid phase, thereby causing the previous generation gadgets to become obsolete, in spite of the gadgets being in good working condition. This is one of the main causes for the increase of E-waste. In the past two years itself the e-waste has gone up by 8% with respect to weight globally. An attempt is made to utilize the e-waste in a productive manner as a filler material and study its characteristics when subjected to different mechanical tests. This paper describes the fabrication and mechanical characteristics of new polymer composites consisting of E-glass fiber reinforcement along with filler material. Study of composites play a very important role in material science, metallurgy, chemistry, solid mechanics and engineering applications. The specimens were fabricated with the help of hand layup technique followed by vacuum bagging process. Mechanical tests viz., tensile test, Flexural test, and Shore D test has been performed. Samples were made of three different compositions of E-waste filler particulate, 5%, 10% and 15%. These tests have been conducted to find out the impact of varying percentage of filler material on the composite laminates. With the increase in the percentage of e-waste filler, there is a reduction in the tensile strength of the laminate, while the flexural strength of the laminates increased with increase in the filler material. The laminate with 5% filler material exhibited higher hardness than the other two samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.