Abstract

The present study deals with the influence of laser powder bed fusion process parameters on the selected linear dimension, surface roughness and cylindricity of AlSi10Mg alloy for manufacturing of a prototype connecting rod. The process variables used in this investigation are laser power, laser velocity, layer thickness and scanning speed. Response surface methodology is used to perform experiments and data analysis. The levels of process parameters are same that is, five for all the selected input process variables. An automotive component connecting rod is used as a component to analyze the effect of process variables on selected response variables. The optimum sating of process variables are different for dimensional accuracy, surface roughness and cylindricity. Minitab 14 software is used for the data analysis. The international tolerance grades of confirmation experiments are calculated as per the ISO standard UNI EN 20286-I and DIN 16901. A quadratic regression models are developed to estimate the response variables in terms of process parameters. The model is adequate within the experimental domain. X-chart of confirmation experiments is plotted. The deviation in the linear dimension is within the limit of ±3 sigma (σ). The lowest values of response variables at the best level of process parameters are obtained, that is, percentage error in dimensional accuracy of 2.65%, surface roughness of 2.57 µm and cylindricity of 0.09 mm. The novelty of this work lies in the fact that only a few studies have been conducted related to the form errors in the archival literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.