Abstract

The current study presents an experimental investigation performed on slender reinforced concrete shear walls, representing a common lateral-load resisting system of mid-rise buildings. The walls were reinforced with steel and glass fiber-reinforced polymer (GFRP) bars and tested up to failure under reversed quasi-static cyclic loading to investigate the capability of GFRP bars in reinforcing RC shear walls under seismic loads. Moreover, the effect of the GFRP reinforcement ratio on the structural response, deformation performance, and failure mode resulting in RC walls, compared with its behavior when reinforced with steel bars, is also investigated. Six full-scale shear walls with an aspect ratio of 3.25 were constructed. The reference wall was entirely reinforced with steel bars. Two specimens were reinforced by hybrid scheme of GFRP–steel bars. The remaining three shear walls were entirely reinforced with GFRP bars. The overall performance of each wall was characterized by investigating the lateral load capacity, hysteretic response, cracks propagation, ductility, and the behavior of energy dissipation. The experimental results showed that GFRP-reinforced concrete walls had an elastic behavior characterized by a stable hysteretic response with recoverable deformation of more than 80% of the ultimate load. However, sudden and brittle failure was attained for the wall with a high GFRP reinforcement ratio. GFRP decreases the displacement ductility of the shear walls by an average of 32.9%, depending on the reinforcement ratio, compared to that reinforced by steel bars. Moreover, lower energy dissipation through inelastic deformation was obtained for the walls reinforced with GFRP bars. Nonetheless, when GFRP bars are combined with steel bars, acceptable levels of dissipated energy are attained compared to the steel-reinforced wall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.