Abstract

Abstract It is critical to well understand the combustion characteristics of the electrolytes inside lithium-ion batteries for safety concerns, particularly the electrolyte jet flames after thermal runaway. An electrolyte jet fire setup is developed in this study to investigate the combustion characteristics of electrolyte jets with the flame-retardant additive tris (2-chloroethyl) phosphate (TCEP) under high-temperature circumstances. Jet and ignition delay times and flammability are defined to characterize the flame-retardant effects. The fundamental parameters of self-extinguishing time and propagation rate are also measured for a comprehensive comparison. The experimental results show that the propagation of electrolyte flame at ambient temperature can be entirely stopped with 40 wt % of TCEP additives and 50 wt % can make the electrolyte nonflammable. Owing to the high boiling temperature and vaporization enthalpy of TCEP, more heat is required for the decomposition of electrolytes and TCEP mixtures, resulting in lower decomposition reaction rates and heat release rates. Thus, both the jet delay times and the ignition delay times significantly increase with the TCEP additives. Moreover, analyses on the spectrum of electrolyte jet flame reveal that the suppressing effects of TCEP on the combustion of electrolyte jets are operated by scavenging the OH radical and heat release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.