Abstract
In the investigation of forced-convection heat transfer in a small-scale channel, the phenomenon of thermo-acoustic instability was observed in hydrocarbon fuel (RP-3) at supercritical pressures. The heat transfer was obviously enhanced when thermo-acoustic instability occurred. To understand the relationship between the enhancement on heat transfer and thermo-acoustic instability, the characteristics of thermo-acoustic instability were firstly investigated. The pressure drop fluctuations were used to represent the characteristics of thermo-acoustic instability. And two pivotal characteristics of thermo-acoustic instability are amplitude and duration. The characteristics could be affected by three operating parameters: fuel mass flow rate, channel inlet temperature and channel operating pressure. A series of experiments were designed to study the effect of these three parameters on the characteristics. It is found that the amplitude increases with increasing mass flow rate, while the duration reaches the maximum value when mass flow rate is a certain value; the effects of operating pressure on the characteristics of thermo-acoustic instability are strongly interactive with the threshold power. And an increase in operating pressure causes the amplitude and duration to decrease since the variation trends of thermal physical properties become smooth; an increase in inlet temperature causes the amplitude and duration to decrease and increase, respectively, when operating pressure is below 3.0MPa. And the duration change indistinctively with increasing inlet temperature when operating pressure exceeds 3.5MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.