Abstract
Overcharge and overheating are two common safety issues for the large-scale application of lithium-ion batteries (LIBs), and in-depth understanding of the thermal runaway (TR) and its propagation of LIBs induced by overcharging and overheating are strongly required to guide the safety design of battery system. In this paper, investigation on characteristics and mechanism of TR and its propagation of LIBs induced by overcharging and overheating are conducted experimentally. Besides, critical thermal energy triggering TR and chemical thermal contribution are identified. The normalized critical energy triggered by overcharging and overheating to TR are also determined. The results show compared with TR induced by overheating, TR induced by overcharging exhibits a more severe and catastrophic result due to their higher heat release, more combustible gases and mass loss. In addition, critical thermal energy triggering TR may be constant for fully charged batteries under the overheating of 300 W and 400 W, which is slightly affected by heating power (Ph). Moreover, Critical chemical heat shows a certain upward trend with increasing Ph. Critical electric energy triggering TR and critical self-generated heat slightly decrease with increasing overcharge rate. In open environment, TR induced by overheating propagates faster than that induced by overcharging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.