Abstract

Carbon nanotube (CNT) is considered as a kind of potential adsorbent because of its large surface area, uniform micropores and unique physicochemical properties. The adsorption performance of ammonia on the packed multi-walled carbon nanotubes (MWCNTs) were studied in this paper. Firstly, the packed MWCNTs were characterized by the scanning electron microscope (SEM) and transmission electron microscopy (TEM). Secondly, the effect of working pressure and adsorbent temperature on the adsorption capacity of ammonia by the packed MWCNTs was investigated. Thirdly, Langmuir and Freundlich models were used to analyze the equilibrium adsorption data and the adsorption kinetics was also discussed using a classical gas diffusion model. The Freundlich isotherm model could elucidate well the adsorption of ammonia on the MWCNTs when compared to the Langmuir equation. The research results showed that the equilibrium adsorption amount of ammonia by the MWCNTs varied between 22.69 and 90.05 mg/gCNT at the adsorbent temperature of 25–35 °C and working pressure of 0.368–0.744 MPa. It seems that the pure MWCNT is not appropriate to act as the adsorbent for the solid–gas adsorption refrigeration due to its low adsorption capacity. However, our research indicates that the MWCNTs can be used as additive to some other chemical adsorbents to improve their heat transfer characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.