Abstract

In order to fully utilize the high tensile strength of bamboo while mitigating the drawbacks of its small elastic modulus and large deformation, a composite structure combining bamboo and concrete was employed. The transfer of longitudinal shear force between the two materials was accomplished by capitalizing on their respective advantages and minimizing the relative slip at the interface. This study proposed a bamboo-concrete composite (BCC) structure utilizing a perforated steel plate (PSP) as a shear connection. An experimental investigation was conducted, exploring different combinations of several parameters, including the aperture size of the PSP, the concrete strength, the presence of penetrating steel bars, and the diameter of the penetrating steel bar. Sixteen groups of BCC structure with PSP connection were tested, and the failure mode, ultimate bearing capacity, and relative interface slip of the structures were analyzed. The test results indicate that as the concrete strength increases, the stiffness and bearing capacity of the connection also increase. However, the corresponding slip at the ultimate load diminishes. Under the condition where the concrete strength and the diameter of the penetrating steel bar are the same, the larger the aperture size of the PSP, the lower the stiffness of the connection, and the greater the slip corresponding to the ultimate load. Furthermore, a larger diameter of the steel bar results in greater connection stiffness and decreased slip at the ultimate load. Drawing on the shear capacity calculation formulas proposed by scholars for PSP connections, this study integrates the experimental results into these formulas and compares them with the actual outcomes. Through a comprehensive assessment of the primary factors influencing load-bearing capacity, a shear capacity calculation formula specifically designed for the BCC structure with PSP connections is proposed and developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call