Abstract

Self-centering heavy timber frames rely on the self-centering beam-column timber connections to limit damage and provide the recentering capability. However, low compressive strength and stiffness perpendicular to the grain of the timber columns have long been a design challenge, which yields low initial post-tensioning forces and possibly a significant loss of post-tensioning forces over the building service life. To address this issue, this paper proposes a new design solution for the self-centering steel-timber hybrid beam-column connections, in which the timber column is replaced by a steel-timber composite column. Cyclic tests were conducted on four beam-column connection specimens with post-tensioning. During the gap-opening, the composite column provided a stiff foundation to the timber beam. The hysteretic curves of all four connections were in a flag shape. Compared with self-centering beam-column timber connections that had the same geometry and material properties, the proposed connection had a larger connection stiffness and an improved efficiency of dissipating energy. After the cyclic loading, the loss of post-tensioning force of the proposed connection was also lower than that of the counterpart timber connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.