Abstract

A cooling cycle experimental apparatus with a modified metal foam porous-wall mini-channel heat sink for the linear Fresnel concentrating photovoltaic (LFPV) system was established to investigate its operation characteristics. The maximum heat flux used in the test rig of the LFPV system was about 37,000 W/m2. In this study, R141b was mixed with different volume fractions of R245fa. The cooling effect of non-azeotropic mixture of different mixing ratios under the action of electric field was experimentally studied. In steady-state experiments, the wall temperature and heat transfer coefficient of the heat sink are investigated. The experimental results showed that the heat transfer coefficient of the heat sink increased by 171% at an applied voltage of 200 V and a flow rate of 80 mL/min for the R141b/R245fa-c mixture. In the dynamic experiments, the critical heat flux of the heat sink is studied and the results showed that the critical heat flux of the R141b/R245fa-b mixture increased by 45% at an applied voltage of 200 V with a flow rate of 75 mL/min. The use of R141b/R245fa mixture with the action of the electric field can greatly enhance the performance of the cooling system and improve the operating environment of the photovoltaic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.