Abstract

The Wells turbine is the most frequently used or proposed self-rectifying air turbine for oscillating-water-column wave-energy converter application, largely because of its conceptual and mechanical simplicity. Biplane Wells turbines allow a higher total blade solidity to be attained than monoplane turbines do, but this results in larger aerodynamic losses associated with the swirl kinetic energy loss at turbine exit. This may be overcome by the presence of a row of guide vanes between the two rotor planes, a solution that had been proposed and investigated theoretically or by numerical modelling. Results of turbine overall performance and flow details are reported from laboratory tests of a biplane Wells turbine without guide vanes and with specially designed guide vanes. The presence of the guide vanes was found to increase the peak efficiency by seven percentual points, while reducing (for fixed rotational speed) the damping provided by the turbine. Measured losses in the guide vane row were much smaller than in the rotors. Experimental results are compared with previously published numerical results. A stochastic theoretical transform was applied to obtain averaged results for the turbine performance subject to the irregular bidirectional air flow induced by real sea waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call