Abstract

AbstractIn this paper, we investigated the microbubble trapping using optical vortex tweezers. It is shown that the microbubble can be trapped by the vortex optical tweezers, in which the trapping light beam is of vortex beam. We studied a relationship between the transverse capture gradient force and the topological charges of the illuminating vortex beam. For objective lenses with numerical aperture of 1.25 (100×), the force measurement was performed by the power spectral density (PSD) roll-off method. It was shown that transverse trapping forces of vortex optical tweezers increase with the increment of the laser power for fixed topological charge. Whereas, the increase in the topological charges of vortex beam for the same laser power results in the decrease of the transverse trapping forces. The experimental results demonstrated that the laser mode (topological charge) has significant influence on the lateral trapping force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.