Abstract

This paper investigates the transfer of liquid cryogens using a no-vent fill (NVF) process experimentally to identify the dominant NVF parameters. The experimental apparatus has been fabricated with extensive instrumentations to precisely study the effects of each NVF parameter. Liquid tetrafluoromethane (CF4) is selected as the working fluid due to its similar molecular structures and similar normal boiling point and triple point with liquid methane which has been considered as an attractive future cryogenic propellant. The experimental results show that the initial receiver tank wall temperature and the incoming liquid temperature are the primary factors that characterize the (non-equilibrium) thermodynamic state at the start of a NVF transfer. The supply pressure is also critical as it indicates the ability to condense vapor in the receiver tank. A non-dimensional map based on energy balance is proposed to find acceptable initial conditions of the filling volume at the desired final tank pressure. The non-dimensional map shows good agreement with the NVF data not only in this paper but also in the previous research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.