Abstract

In this study, the saturated flow boiling heat transfer of γ-Al2O3/H2O nanofluids with 20nm diameter and 0.1%, 0.5% volume concentration in a vertical tube is experimentally carried out. An ultrasonic oscillation was used to prepare nanofluid. The influences of such important parameters as surface heat flux (50–300kWm−2), pressure (0.2–0.8MPa) and mass flux (350–1100kgm−2s−1) on boiling characteristics are taken into consideration. It is confirmed that the most enhancement is about 86% for γ-Al2O3/H2O nanofluids saturated flow boiling heat transfer compared with deionized water, and the average value of Nusselt number was enhanced 23% and 45% respectively for 0.1vol.% and 0.5vol.% in this study. And the Nusselt number of nanofluid flow boiling increases with increasing the surface heat flux, the volume concentration of nanoparticle and pressure. It is confirmed that nanoparticles deposited on the heating surface by SEM observation and nanoparticles do not change obviously after boiling by TEM observations, they are attribute to the continuous operation of ultrasonic oscillation. In addition, the influence of mass flux on the enhancement rate of nanofluid saturated flow boiling heat transfer is negligible. Furthermore, a dimensionless parameter was proposed for nanofluid saturated flow boiling heat transfer data processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.