Abstract

AbstractThis research investigated the mechanical property and hydration process of sintered sludge cement (SSC) paste, focusing on the effects of calcination temperature of sludge, sintered sludge ash (SSA) content, curing age, and water‐binder ratio using isothermal calorimetry, X‐ray diffraction, scanning electron microscopy, and multiple regression. Increasing calcination temperature enhanced the compressive strength of SSC paste due to the decomposition of minerals like Clinochlore and Muscovite. The compressive strength decreased by 2.4%–49.4% when the SSA content increased from 0% to 50%, with more significant declines noted at higher water‐binder ratios. Notably, the 7‐day compressive strength of the cement paste with 10% SSA showed little change, and the 28‐day compressive strength actually increased at a water‐binder ratio of 0.4. SSA slowed down the hydration rate of cement and induced more Monocarbonate to form in the early stage. A multiple linear regression model was developed to predict SSC compressive strength with a 12% error margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.